Predictions Data / Publications
Model Predictions
Each zip file contains two GeoTIFF’s that contain the coral cover predictions or the associated estimates of uncertainty, by year:
Manipulating Model predictions
Instructions to manipulate the output from the Virtual Reef Diver Model:
Publications
Further information on the the methods used to generate these predictions and misclassification errors can be found here:
- Peterson E., E. Santos-Fernández, C. Chen, S. Clifford, J. Vercelloni, A. Pearse, R. Brown, B. Christensen, A. James, K. Anthony, J. Loder, M.González-Rivero, C. Roelfsema, J. Caley, C. Mellin, T. Bednarz and K. Mengersen (2020). Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef, Environmental Modelling & Software, https://doi.org/10.1016/j.envsoft.2019.104557. – Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef
- Santos-Fernandez E., E. Peterson, J. Vercelloni, Em. Rushworth and K. Mengersen (2021). Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective. Journal of the Royal Statistical Society: Series C (Applied Statistics), https://doi.org/10.1111/rssc.12453 – Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective
- Santos-Fernandez E. and K. Mengersen (2021). Understanding the reliability of citizen science observational data using item response models. Methods in Ecology and Evolution, https://doi.org/10.1111/2041-210X.13623
- Vercelloni J., Peppinck J., E. Santos-Fernandez, G. Heron, T. Dodgen, M. McBrain, E. Peterson and K. Mengersen (2021). Connecting virtual reality and ecology: a new tool to run seamless immersive experiments in R. PeerJ Computer Science, In Press.
- Santos-Fernandez E., J. Vercelloni, B. Christensen, E. Peterson and K. Mengersen. Complex image classification via crowdsourcing for conservation: a viable solution? https://www.researchgate.net/publication/351010411_Complex_image_classification_via_crowdsourcing_for_conservation_a_viable_solution